Theoret. chim. Acta (Berl.) 4, 260—264 (1966)

Istituto di Chimica Fisica ed Elettrochimica, Centro di Chimica Teorica del CNR,
Universita di Bologna

Atfomie Potentials from SCF Data
By

Fasio CaAMPADELLI and CARLo ZAULI

The possibility is explored of representing atomic potentials, derived from SCF data, with

function
A

V(R)=R™ > mif{exp( -2 R)[(2 0~ Viny) R +1] -1}

1

where ni, o and V{ are parameters. For two-electron systems, a general formula is derived.
The results obtained for a limited number of many-electron systems and with only two terms
in the fitting function indicate that it is likely that a general formula based on the above-
mentioned function will represent satisfactorily SCF atomic potentials for neutral atoms and
ions.

On examine la possibilité de représenter des potentiels atomiques, dérivés de calculs SCF,
par la fonction:

A
3:) V(R) = Rt zi i {BXP( - 20 R) [(2 o — V?/m) R+ 1] - 1}
1

oll mi, o; et V} sont des paramétres.

Pour les systémes diélectroniques est dérivée une formule commune. Les résultats obtenus
pour un nombre limité de systémes polyélectroniques (avec A = 2) indiquent qu'une formule
générale basée sur a) devrait représenter satisfaisamment les potentiels SCF pour les atomes
neutres et ionisés.

Es wird die Méglichkeit untersucht, atomare Potentiale aus SCF Daten durch obige Funk-
tion darzustellen. Fiir Zweielektronensysteme wird eine allgemeine Funktion abgeleitet. Die
Ergebnisse, die man fiir eine Anzahl Mehr-Elektronensysteme (fiir 4 = 2) erhilt, lassen den
obigen Ansatz fiir atomare Potentiale neutraler Atome und Ionen zufriedenstellend erscheinen.

In many perturbative problems, electrostatic approximations may often be
sufficiently accurate to yield quantitative answers. This may be the case when
dealing with non-specific interactions among molecules or ligand perturbation [2].
Examples of this situation may be found in electronic spectra of molecular crystals,
molecular Rydberg series and possibly in generalized solvent effects in vibronic
transitions or substituent perturbation on chemical shifts. In the latter cases other
physical parameters may participate significantly, such as polarizabilities, magne-
tic anisotropies a.s.0.: even then, it seems desiderable to assess the weight of the
electrostatic perturbation.

Since the latter is equivalent to a term in the hamiltonian operator and since
the potential field generated by a molecule or a group, in an approximation which
neglects exchange terms, may be built out of atomic potentials, it was thought
worthwhile to obtain for the latter analytical functions as accurate as possible
and at the same time simple enough to be handled with ease. For this purpose the
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possibility was explored of representing analytically potentials derived from self
consistent field data for neutral atoms and ions.
Analytical function (1) was chosen: it is derived, by generalization, from the
hydrogenlike 1s-electron potential:
A

V(E) = R™ ; ni {exp (—2 o B) [(2 o — Vi/mg) B+ 1] — 1} 1)
where n;, &; and VY are parameters conditioned by (2a, b):
jzi ng=mn (2a)
n being the number of electrons in the atomic system.
5,70 = SR (2b)

{(R;*> being the reciprocal mean radius of the i-th electron.
Function (1) satisfies boundary conditions (3a, b):

lim [ — RV (B)fn] = 1 (3a)
lim [— V(R)] = 3, | PHR) RLdR = S; (R7 (3b)

being P;(R) the i-th reduced radial self-consistent function.
Function (1) can be interpreted in two ways:
a) as a potential generated by reduced radial functions of type (4)

1 1
Pi(R) = 2 o0y mi® R [(o + pi) — fi Bou]* exp (— oy R) (4)
where 8; = o; — V§ [n*.
Function (4) vanishes for R = f;/o; («; + pi) and at the boundaries, while it
becomes imaginary when R < B;/oy; (s + Bi); the corresponding radial function
R)/R vanishes for R— co and approaches infinity when R goes to zero. These
difficulties can be overcome by multiplying the negative term 8;/Rx; in eq. (4)
by [1— f(R)], with f(0) = 1 and f(R) becoming negligible for B> fifos (s + fs)
and such as to keep positive the expression inside the square brackets. This will
not modify appreciably neither the normalizing condition nor the mean radius. The
former requires #; to be unity while the latter is represented by V?, which is fixed
by boundary conditions [see eq. (2b, 3b)]. Thus (4) are essentially one parameter (ox;)
functions: they do not form an orthonormal set since P; (, ) is not orthogonal to
Py (n', 1): this can be cured by taking suitable linear combinations of (4), which
corresponds to adding a term. in eq. (1).
In this form eq. (1) may perhaps find some applications in aiding self-consistent
field calculations of atomic systems or in molecular problems.
b) as a purely empirical function with n;, &; and V7 fitting parameters subject
i

A
to conditions (2a, b). Thus only >, n; and >, V§ retain a physical significance.
1 1

In this exploratory investigation, interpretation b) was followed with some
limitations hereafter specified : thus, being atomic charge distributions spherically

* f; can be taken as a measure of the deviation of the potential from the hydrogenlike
form, since in the latter case it is zero.
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symmetric, Poisson’s equation was used to derive, from self-consistent field data,
atomic potentials in numerical form. Double integration was performed with a
method indicated by HARTREE [3] on the charge distributions of the following
atomic systems (ground state except for carbon):

He, Bet, C+4, Be, C*2, B, 03, C (sp®), O3, N, O, F, Ne (5)

for which SCF functions are known in the literature [3, &].

When this investigation was already begun, STRAND and Boaway [6] published
a paper dealing with analytical fittings of potentials derived from SCF data, with
function (6) previously proposed by IBERs and HoERrNI [4]:

Z(R)[Z = Z;%iexp (— 1) +y 2,;P5exp (—P47). (6)
Funection (6) was applied only to neutral atoms.
¢) Two electron potentials. For two-electron systems in the configuration
1s? (He, Be*?, Ct4), under the condition 4 = 1%, eq. (1), inclusive of the nuclear
term, becomes:
V(R)= R {2[20,— V3[2) B + 1] exp (—2 &, B) + (Z—2)} (7)

Z being the nuclear charge.
This is a one-parameter () function since VY is fixed by boundary conditions.
oy was optimized by minimizing integral (8):

AU = f | U(R) — Un(R) | dR (8)

where U,(R) is the numerical self-consistent field potential and § a suitable value
(~ 2 a. u. for the above cases).

Table 1
R. He Bet? Cte
a. 1. Un (R) eq. (10) Un (R) eq. (10) U. (R) eq. (10)
0.1 16.684 16.714 33.113 33.129 50.078 50.082
0.2 6.827 6.857 14.013 14.012 22.222 22.217
0.4 2.207 2.220 5.679 5.666 10.181 10.178
0.8 0.429 0.421 2.533 2.629 5.001 5.002
14 0.055 0.045 1.428 1.429 — -

Linear correlations were found between «,, V] and Z given by eq. (9a, b):
o, =24—0.375 A =0.01 (9a)
1 2=2-—0302** A=0.01 (9b)
A = square mean deviations
which substituted in (7) lead to the extrapolated general expression (10) for two-

* For ) = 1 interpretations a) and b) coincide so that one may represent the He-like 1s-
orbital with function (4) suitably corrected near the origin as previously indicated.

** Since (B~1) for Slater’s type orbitals is a function of the exponential factor, it can be
seen that the screening constant for 1s-electrons (0.30) derived from (9b) is exactly the usual
Slater value.
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electron (1s?) potentials:
U(R)=R1*{2[(Z—0448) B + 1]exp [—2(Z—0.375) R] + (Z—2)} (10)

which may be assumed to hold at least for first row elements. The deviation from
hydrogenlike form. is here not very large (8 = 0.073). The accuracy of eq. (10) can
be judged from the data collected in Tab. 1, where numerical SCF potentials
U, (R) are compared with those derived from eq. (10) for a number of points.

d) Many-electron potentials : for the many-electron systems in (5), in order to
limit the amount of computations, conditions (11) were imposed in eq. (1):

=2 (11a) o
R T I e e v A
=2 . (11¢) electron systems
Function (1) contains now two fitting atomic 0 0
parameters o, and V9 or V3, since the sum system 2 & &
of the latter is fixed by boundary condi-
tions. Be 0.612 7.602  0.807
e o2 1.280 12.262 1.163
Optimization of the parameters was B 0.753 9.799 1,438
performed in a similar way to that follow- Ots 1.850 17.336 2.923
ed in the two-electron case, by minimizing C(sp?) 0.872 11.787 2.702
the deviations, not through integral (8), - O™ 1.730  17.758  2.968
which would prove cumbersome with desk lg 128; 1332(5) ‘;ggg
computing, but for a selected number of ¥ 1.367 17.330 8,796
R-values in the range where the potential Ne 1.578 19.842  10.951

of each atomic system is more significant.

In Tab. 2 are collected the optimum values of «, and V§, V3 for the many-
electron systems listed in (5).

As expected from simple considerations on the reciprocal mean radius of
Slater-type orbitals, a correlation exists between (V] <+ V3) and Z, n expressed
by eq. (12)*:

V4 Vi=—0.138 22 + 0.295 nZ + 1.305 Z + 0.231 n — 0.266 (12
)
A4=0.03.

Although the number of atomic systems here investigated is limited, some
regularities in the fitting parameters can still be observed (see for instance the case
of 03, 0+2, 0). Indeed for V) and «,, a correlation exists with Z, n although at
this stage may not be very significant.

The accuracy in representing potentials derived from SCF data for many-
electron. systems with the severe limitations (11) imposed, is usually lower than
for the two-electron case, but still satisfactory.

From the present exploratory investigation it can be concluded that even with
a limited number of parameters, function (1) represents with reasonable accuracy
potentials derived from self-consistent field data and as such can be conveniently
used in perturbative problems or to derive physical parameters of interest.

* By using Slater’s or Clementi‘s [1] set of screening parameters, one obtain equation

n
for Z; (R;"!) similar to (12).
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An improvement may be obtained by optimizing separately all parameters and
perhaps by taking A equal to the number of different atomic orbitals involved. In
this case it is likely that a general formula similar to that obtained for two-
electron systems can be derived, which applies to neutral atoms and ions.
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